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AB02RACT

A WKB approxiation is used to calculate cross sections

for the 180 scattering of scalar and vector waves by a class

of spherically symetric, repulsive potentials. These

potentials are such that the corresponding index of refraction

has a unique zero. The scalar problem is discussed in the

framework of quantum mechanics., and the result is just the

classical cross section. Electromegnetic backscatter from

a dielectric is found to be three-quarters of the soalar

approzxtiton in the extreme gseometrial-optics limit.
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I ° Z328DUCTION

Interest in radar cross sections has encouraged investigations on the

backscatter of waves from inhomogeneous media. In general, this is a diffi-

cult problem to anelyze. Exact solutions are rare, and the Born approximation1

is worthless when the index of refraction differs significantly from unity.

The Schiff approximatipn 2 is expected to have a wider range of validity,

buts its usefulness hinges on the evaluation of a difficult volume integral.

In this paper, we consider the simplest spherically synetric systems to

which a "semi-classical" approzimation is applicable. Speiflcally, the

index of refraction of such a system is a continuos function of r. and it

has a unique zero at ro .

The scalar-wave problem is studied by investigating the equivalent

problem of electron backacatter from repulsive potentials. The correspondence

principle in derived for I80 scattering; that is, a MM scattering amplitude

in obtained which gives the correct classical cross section. The classical

result is shown to have an upper limit of j ro2 . In addition. the inverse

square-law potential is examined in som detail, for the phase shifts are

known exactly, and corrections to the classical result can be derived.

It Is known3#' that the problem of alectromgetic scattering from a

spherically symetric dielectric is reducible to the solution of two scalar

problems; that is, two radial differential equations must be solved for two

sets of phase shifts. For our purpose, the amplitude for vector backscatter

is proportional to the difference of the corresponding scale- amplitudes.

While difficulties &rise because of the zoro in the index -f refraction,
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these scalar aplitudes can be replaced by WKB approxiations analogous to the

one intro&zced earlier. This approzimation is valid in the extreme geo-

metrical optics limit. Here expressions simplify, with the differential cross

section for electromgnetic backscatter redacing to three-quarters of the

result predicted on the basis of the scalar wave equation.

-2-
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Ii. THE SCALAR PROBLEM

The time-independent scalar wave equation is

172 + k2 n(r0 ( - O, (21)

where n(r) is the (spherically symmetric) index of refraction of the medium,

and 2x/k is the wavelength of the incident wave. The asymptotic scattering

solution of Eq. (2.1) is

ikr

(2.2)

where 9 is the scattering angle. The differential cross section is related

to the angular aplitude f by

6(0) . f (0)12 (2.3)

We want to evaluate 6'(s) by geomtrical optics. To be more specific, we

rewrite Eq. (2.1) in the form

Iv2 + k2 -.(W) t (r. o 0 (.4)

This is the Schr&inger equation provided that

k2 = 2m , (2.5a)

u(r) - 2 V(r) . (2.5b)

-3-



61uo-7837-R-mO0

Equations (2.4i) and (2.5) represent the scattering of non-relativistic particles

of mass m and energy R by a potential V(r). Now the problem is to demonstrate

the correspondence principle for backscattering; that is, to let i--Po in such

a way as to obtain the 6 (x) of classical mechanics.

The scattering amplitude is given by the relation

f(.) - (2ik) 1  E p+ ) [Q) P ,0oo 0) . (2.6)

The j are the phase shifts which each of the elementary partial waves of

angular momentum has experienced because of the potential V(r). The Pj

are Legendre polymoials. The VKB or semi-classical approxiation5 for

scattering is defined by the following steps:

(1). The approxdmtion of by the WVB phase shift

. r [k - U(,) + " + ( A+ *) -x/2 (2.7)
rJ r

0 - U(r1 ) - (,+ J)/r . . (2.8)

(2). The replacoment of the amin Eq. (2.6) by an integral over k.
(3). The replacemont of Pt(cos o) by a smooth function of Q .

The approximation in step (1) is applicable to potentials which vary slowly

in a wavelength. The result of differentiating Eq. (2.7) with respect to

Lis

lQ(L) - 2 f dr-- L (2.9)Jr r2 2 ( E- V) --r 2
L r



61uo-7837-.m.oo

L (2.10)

G(L) is the classical scattering a.26e6 for energy Z and angular mommtum L.

The correspondence principle appears to have been demonstrated7 only

when I sin Qx-l. We are interested in the case sin 0-,o. Using the

above lI prescription, we replace Pj by

P(coo 9)_ exp(--K) Jo[(t 2 + I) (S - 0)], (2..1)

a result which in exact when 0 a and I is an integer. The error In re-

placing the ma by an integral can be determined In prifciple from the Rler

son form" 8

K- go o dAg() , (2.12)

of which the following form is most usefull

K-J(go +0) + B . [(21 _ 1) (2 j  1) +RN + . (2.13)

The parentheses on the g's refer to the number of derivatives. As N--+oo,

the rmsnder % + i mLy approach 0. In general, however, the sum over

Bernoulli Iumbers Bat will yield an asyqtotic series.

When = a, Sq. (2.6) siqlifies to

f(a) - (2ik)1  (21 + 1) [ep2~ ~e(i~) .(2.14i)

Since f(s) Is aumed, to be wel lGefined, Eq. (2.i) can be written as

f) m (2ik)' 1.iao o(2R + 1) ep*[i&t - () + i)kl, (2.-15)

-5-
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where we have used

OD

The latter equation follows from the completeness relation for Legendre poly-

nomials. It my also be derived from Eq. (2.13), for K = 2/X2 + i/S ,

whereas

m fdi (21 + 1) [-(+ )i] 2/2 -i/,, . (2.17)
0.

The 11lit on cu, a positive quantity, is carried out after mstion. Equation

(2.15) now beccins

f(,) - K + f (s) , (2.18)

fi(s) E (21k), 1 i- !d. (¢I(1 + 1) e p[,i () - (w + is)A. j . (2.19)
(D-*O 0

Clearly, the above result will be most useful when K is a small correction;

that is, when the replacement of su by integral is a good approximtion. In

general, the phase of the summad In Eq. (2.15) changes rapidly with I.. so

that f(s) will be the result of delicate cancellations between positive and

negative terms. For this situstion,# K will be large. However., if the phase

does not change appreciably over & large range of Ps'5, the algebraic sign of

the terms stays the samw, and we get a large contribution to the sm. Hence,

K is expected to be all when the phase is stationary for some ko:

2dS °  -0 ) . (2.20)

-6-



61i0-7837-m-mo

Referring to Eqs. (2.9) and (2.10) for the WKB Approximation to the phase

shifts, we see that Eq. (2.20) is satisfied when Lo 0. The imlication

is that Eq. (2.19) can describe the backscatter of a classical particle

with zero angular momentum.

The above suggests that we replace &Q~) in Sq. (2.19) by an ex-

pansion of 61 (2) in powers of i The class of systems for which this

makes sense can be determined by examining the potential-dependent term

in Eq. (2.-7),-

An expansion about -0 implies that the centrifugal potential term is

a correction to V. Then the turning point r 1 is approxiately ro0 , where

Eu-V(r) . (2.22)

This Imdaeyrules out attractive potentials and repulsive potentials

for which E is always greater than V. The simplest remining situation

is a repulsive potential and an incident energ for which there is a single

turning point; e.g. a mnonotonically decreasing potential. Equation (2.22)

will be valid for this case if only small bes are Important, and if

kr-% 1. Systems with mltiple turning points will be igored as these

involve non-classical barrier penetratIon.

Mhe Taylor expansion of Eq. (2.7) in powers of iyields

-7-
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where

a- A (2.24)
0R-*D

0Ab =f dr (2.25)

If Eq. (2.23) is substituted for &Q) in Eq. (2.19), and if a change of

variables, x2 
- "i( + )20 i2 made, the integral become

f1L(S) = p -1 eVp(21&A) An d x exp [_(w + ib)x2 + 0(t)j (2.26)

p - ik . (2.27)

The convergence factor has been modified for convenience. In the limit

-Do, Eq. (2.26) sinilifies to

-o(,) n (2pib)'" p(21A/h) . (2.28)

The corresponding cross section Is obtained from Zqs. (2-.3) and (2.28):

60(s) 1 (2.29)

V10 d 2(- )?I
We not nov shm that Z'. (2.29) follows from the classical cross

section, mla

T5( -L tI - (2.30)
6C- p sin 0 d9

For a repulsive potential and a single turning point r , the relation

between 0 and L is

-8-
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0(L) [b( - V) - L / (2.31)

The Integral In Eq. (2.31) is greater than zero. Thus, when 0 -x, L

must be zero. Epansion about L a 0 gives the relations

L (2b) "1 ( - ), (2.32)

-- - (2ob) , (2.33)

where b is dfined by Eq.. (2.25). By substituting the last two equatios

In 1k. (2.30), ye again obtain Eq.. (2.29).

Equation (2.28) applies to the combination of a repulsive potential

and a single turning point. A validity condition relating wavelength and

potential strength in most easly obtained t m Sq. (2.13), the differene

between sn aM ingstral. Referring to Eq. (2.15), we find

t (2k)"  (2, + 1) ex [2i t - (m + Ix)j (2-A

so that the first-order correction in Ii (m4gnitud) is of the form

-h -l eW (2:iaA) • (2.35)

The ratio of the preceeding factor to Eq. (2.28) gives the following

restriction:

1:41 vS~r i tu O !~;/3 1 (2.36)

It is clear from a grph of the u-integrand that the above integral

has a minium value of (kro) 1 for repulsive potentials which vanish at

-9-
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infinity. Thusp ve are spin led to the conclusion that kroa- 1 for the

validity of the classical result. The above integral also occurs in the

classical cross section, Eq. (2.29). We obtain, therefore, the following

upper limit to d'o,(s): -1k

-L 1 0 (2.37)

te form of Eq. (2.37) suggests division by JeW of a geometrical total

2cross section, xro .

The integral in Eq. (2.29) can be done exactly for Inverse power-

law potentlals, U(r) - %rn., nwO. Thus, by the substitutlon r - rot-

we heve
0 0 1 / r 2 1

I dr B~l(2.38)

where B is the Beta function. 9  In terms of amnx functions, Eq. (2.29)

becomes 2 1

60(s) ,0 (2.39)
+)

For the Coulomb potential, ve have 60() - 1ro _ ro - i/k hile the

result for the Inverse square law is &, SE) k .4r2,r The

backscatter cross section for the inverse square law can be approximted

by the classical result when (r)uml.Finally, as n-+w in Eq. (2.39),

60 apoaches the vper limit of Eq. (2.37).

- 10 -
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III. TUZ 13WH 8QWM-LW POTMMAL

In Section II, we could not write down exlicit corrections to fo(s)

because, in general, the error In replacing by is not known.

However., the phase shifts are known exactly7 for the potential U -2

and they are equal to the lK plase shifts:

X/ 4 us2 a(i+) + (3.1)

In addition, the integration in Sq. (2.19) can be carried out exactly,

oen if E. (2.11) Is used to eztmd (auw-,dmte.,) the result to angles

CoIO"e 10 : (3.2)

gi d A (2 j+ 1) sp [2iL(Q) -(m + ix)L] J[(e2 +0) (W 0)]
00

-1/k Anu f dx x eTx -6 + IN) [z2 + ( .+*)]*)Ja -T0)] , (3.3)

where the. substitution z2 - (+ 1) is mMW In the last step. Eqation

(3.3) integrates to"

fo) a [ o fL- + ,)*[o2 - N -.)21 1 1 + l:(i,, *)*[2 - (a - QJ 0) (3a4&)
i' k X2-(x.- 0. 3/

(22 -2 (35

The ratio /kIis ind ependen of k.

When 0 , a, we use Eqs. (2-.18) and (3.) to write the following ct

result:

-11-
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f (a) -K -(k%) [-Ig('i+ [)* + is(.' )(+ (3.6)

BoveOr, as ve nov shov., the asymtotic ensasion for K, Eq. (2.13), is

validonlyhem n Wv "1. To ObtainK, ve0 ot

.(2k) "- (21 + 1) ,, ((m + i) [y + (k+ 1)21*1 (3.-7)
sna note thaat--rt. 1) . O, becmus of the oomvrwpmoe factor m. 12ien,

Eq. (2.13) Yields

+ i . + 0 .,+

16( + *) W L-k.~)+o[#.r/2 (3.8)

Ibe first thme teims of an as"Puyotc mainsion for 6 (sg) mm follo from

IV. (2.3), (3.6) and (3.8):

k2S26(s)-- W' + + P 4 + 0( -2) , (3.9)

vhere
1 1 ug2

I-- w.-.o3' , (3.10)

is g4 0(3.11)

Euation (3.9) an be Interpre a n examnsion in PMWe of J2. A grai

of 6(o) versu 6 vii approah a stra t Lim for lat , vith al as

Its projected unteropt.
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IV. TU VEZCT P305, 1

The preceeding foruilation can be applied, in a suitable limit, to

the problem of elctromgnetic backscatter from an Inhomogeneous dielectrtc

t(r). With the assumption of sinusoidal tme-dependence of the fields,

the pertinent N LUel equations are

V. (,63) .0 , (1.l,)

v . 0 , (4.1b)

4-Vx . ikN • (i.lc

It has been shown by Arnush that H is derlvable from two saler fWtions ,

vhre and satisfy the following partial differential equations:

V2,V + k2 g(r) .0 , (".3)

+ [k2e(r) - (r)] -0 ,.

W(r) .21 1) _ I d
2 " 2.- "4

Mhe bowabary conditions on P) and 0 nost be such that

Z---* 2 wW(Lk,) + _ (G, I I ex (Lkr.) NO.6

Ese, x is the intJal polarization and A is the vector scattering

a& ltUde. he abalute square of A detemines the a cross

section.

- 13-
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The radial equations associated with Zq. (34.3) and (34.34) are

A.(rR-) +[ k2 (r) - (+ 1)] (rRL) 0, (4.7)
d rz

with boundry conditions

At , r S r-*o 0 (4.9)

r~t --- sin (kr - 9is/2 + (34.10)

rSI : sin (kr - */ + ) (4.12)

The phase shifts and det *rermine the scattering.

The scattering amlitude is derived by substituting eqensions of

the form

R, (9j. 9 )(412

for Y and 1In Eq. (4.2), nd then byusing q. (4.1c) and (4.6). 3n

general, A is a ccmplicated function of angles. but it siplifies for the

forvward and backward directions:

4ikA(o) . (-ij 1€, l) [,,€( 2 )- 1 + ez €( ).] (4.13)
OD

The latter equation my clearly be written in the form

2A(s) - f. (s) - fo(s) - (€t)"1 [00( o) - 00(2110)] (3.l)

- 14 .
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Here, f ,_ are back-scatter amplitudes for the scalar problem represented

by Eq. (4.3) and (4.). with boundary conditions of the type Eq. (2.2). We

derive an approximate expression for A(%) by replacing fp.' by their relevant

WKB scattering amplitudes.

Equation (4.3) can be rewritten in Schr~dinger form:

V 2% + [k2 -U(r) - (2.4)

where

e(r) -1 - U(r)/k2  . (4.16)

The restrictions on U(r) are the sam as those applied to the potentials of

Section II; nialy, that U is positive-definite and slowly varying in a

wavelength' and that U a k2 is satisfied uniquely at r w ro . With this

choice, e(ro) 0 0, and c(r) - 1; e.g., a plas . The WKB phase shifts for

St are then given by Eq. (2.7), and the scattering aolitude by Sq. (2 28).

In term of k and s we have

MW (2i N. [ dr(k 2o)-

Foo
.l06 (14.17)

Equation (4.17) requires for its validity that krol-m- 1.

he derivation of the anlogous exrwsion for fo is more subtle,

for it is not true that one merely replaces k2 a in Eq. (-.17) by k 2a - W.

Instead, we will show that

- 15 -
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d(f) - ()f .25)WM0 (2:L 3-0

k2c(p) - (P (p0) - 0 .0(1'19)

An understanding of this mdification is arrived at by smmin the

nature of W(r)., In particular, this "effective potential" is singular at

r - ro, for a is zero there. An expansion of q. (4.5) about r gives

W Ce (t - %)-s, (.

vhich I:eplies that W drops, in isngitude, from infinity to order 2 in the

distance of a wavelegt. It is convenient to partially rewrite W in term

of u by us of . (.1.6):

V(r) - (ek2 -2 [vI Cr)] 2 + J(ck 2)1' U-(r) .(1.)

The prime denote derivatives of U. The function U(r) -will change a~reciably

from Its value at ro In - Pharacte'istic distanoe i(>'.). At this relative

distace, e is of order ulty , and as an order of magltude estimate of ]q.

(4.21) reveals, W-- - U. , Sq. (1.8) eresents scattering by a long-

range potential U and a short-range potential W, the latter rising very

steeply nar ro, where it presents an lqpmetratable sphere. he form of W

for r c ro is Isterial since the incident wave cannot penetrate this region.

The above remrks are most easily i n the cas e U a Yr-2. wher

-16-
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W(r) 3ro 2 (r2  %ro) 2  ,ko. " (4.22)

The WK formalm cannot be expected to hold in the region where W

is varying rapidly. The turning point p0 wst be enough wavelengths from

r such that W appears as a slowly varying perturbation to the Incoming

scalar wave. To show that this is possible, we eval ate the fractional

change of W in a wavelength for the exlaple of Sq. (4.22)j that is,

IW,(o~j po/k(4.23)F 0() (Po + { ro)  .((.o3

To deterums p0 for this ammile,. we write Sq. (14.19) In the form
(Po2 _ r 2 )3 = 2 2 P 2 (.24)

A first appr mtion is obtained by, replacig p0. on the r lt-band side

of Eq. (14.24) by ro:

0o 0 [L I(/ )z ]

This step in clearly justLfied for very large. fhe diffrence beween

P 0  ro is

k(o ) ( o V4)1/ 6  (4.26)

so Zq. (4.23) become
I (Po)l rW(P o)  oC (kro0)-/3 .(4-27)

fs, the leftbLand sie of Iq. (-27), can be mde Isill. MIS t~or to

the right of the p otiomaty sign will apear again in Section V as

17 -
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an oxpansion parameter in the perturbation treatment of Eq. (-.18).

In order to derive the In Vhase shifts, we observe that the

singularity at r = 0 is responsible for the factor (k,+ ) in Eq. (2*.7),

an opposed to the familiar (+ 1). This was first proved by Lsnger,

who intro&ced the following approzdntion to the wave function:

o~ () *[4) (Qk * I113C19  + -Tl,3(Sl) I 1.B

()- dr' Q,!r') (14.29)

The J's are Bessel functions. Eqstion (4.28) satisfies the differential

equation

drW

+ [ Cr2](r).0 ,(13)

q,(r) - -5/36 + 2 Q~ (14.32)

This approimation Ls valid when the lIKE approxistion is valid(q

and, because k(pI) is finite, it my be used throughout an interval n-

taAing the turning point.

We tentatively take the folloving form for 0,,,

2 - k2,(r) - cW(r) - (,+ .2)/r2  ,( .3)

where c is a constant. For discussion purposes, Eq. (14.8) can be thouht

of as representing electron scattering by potentials U and w. Then, the

-18-
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wve nmber k is proportional to h1l , is inependent of i, and q, is

independent of h to first order. Thus, in the limit 4--+ op the first

term on the right-Mnd side of Eq. (4.33) will be dominant except near

ro 0 here it goes to sero vhile W becomes infinite. Equation (4-.33)

clearly Was the following form near r - to:

2 - 01(r - - c,(r - , (&.( 34)
k r--r ro  ro) 2 oro)'

Where cl, a. are constants vhich depend on c. By substituting Eq. (4.3)

into 2q. (4.32), an by noting that

S(r) ----4 1 , (r - (o)1.3)

we find
qQ(r) * - r - o - - (r - .o- (4-36)

-Wro 1 . '

!husp the differential equation for co) has the following form near ro:

+ +( 1) 0 2 0:~r~ 0o (Ii.37)(r -ro)Z.  (r -ro)

Also, Eq. (4.8) takes the form

+ [-3/ ( -1o)z 4(r '- )

a ( r"¢ro ) lu€(ro)] "  (r.m)

A co~arso of Eqs. (4.37) an (4.38) yields the results,

- 19-
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These values are consistent vith the choice c - 4/3 In Eq. (4.33). SUSs,

Eq. (4.29) become

2S(r) [ dr' 1'k', -[, - (W J+*)2/r,"2 • (,,. )

If the as mtotic form of the Bessel functions for Jt Ig and real are

substituted Into q. (4.28), the asmptotic form of con is obtained:

(r) r sin (kr - is/2 ,) + (4.42)

As a check, ve note that the required solution to q. (4.38) approaches

zero at ro as

r (r - ) (4.44)

For r -c pX and large, Eq. (14.28) takes the form1 2

(O ---- (yQ) P(Sj) . (4.45)

From Eqs. (4.35) and (4..0).. ye baye

ep( I - I -- wSo [lo((rr rr ) . (4.46)

The factor (q) 4 contributes (r - r0 )*, and cotapproaches r0 fra the

rigt as (r - ro)3/2, In apm t vith Eq. (4.44).

Th &-,ependence of the is the e as in Eq. (2.T). HMcs,

the o scattwin a i1tbad fo obtaied bY subtitUtin 1q. (4-43)

into Eq. (2.19), met have the sam form as (4.17), but with k2  replaed by

-20-
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k 26 - W. This is just sq. (4i.18). Frmthe standpoint of quant~a

mnechanics,. k is proportional to and W Is independent of i. Thu,

it might be argued that the term - W must be dropped for consistency.3
This argument is erroneous, aWin because W is singular at r 0 In

Section V, it is shown that the umplitudes f ,0 and f 0 have equal

magnitudes, but differing phases In the linit h-- O.

Finally, we investigate the error in replacing the on over k~ by

an Integral. The difference between the exact amplitudes is given by

2q. (I.5,so the first-order correction as determined by sq. (2.12) and

(2.13) is

But Eq. ('4.47) has thes Maim form asthe second term, In Eq. ('4.15). 3h

semi -classical term, Eq. '(4-.i7) is of order Iand mast be dropped.

Therefore, the JIM aproximtion for A(s) takes the forms

2*0 () * (c) - f 0 (s) ('.)
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V. ~ mci VALUATION or niUTUtA

The intepmtions in sq. (4.18) can be carried out approxmtely

in the extre geametrical-optics limit. We first consider the Phase

factor

An 2 Jim J dr(k2 - 4w)A*-kR] 51

.2 "i. &(d(k2g)* -kR ] +2 1,(52

where
I 0- - dr(k2 c)i + drkog)i [(i - 4/3 4-A - I (5o3)

t2

0 
0

The first term in Eq. (5.2) is coninn to both fr, and f OP and, hence,

can be ignored when deriving cross sections. If the second term of

Eq. (5.3) is integrted by parts, the bounry term is zero at the uper

limit and is the neptive of the first ter at the lover limit, by Eq. (4.19).

Therefore, ve am left vith

4/ -w f dr~',) --

0~0

It vill be shmn that the ain contributions to I coms from values

of r near p0 . To esphasise this feature, ve change variables to

Y2 4/3 W(k20) "  _ (k6,3) - (U') 2 A(r) , (5.5)

A(r) - 11 + 2/3 k2c(U.) (U,) 2 # 1  (5.6)

- 22 -
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where the second equality of Eq. (5.5) follw from Eq. (4.2:). te

derivative of y is

S-- (k5e5/2)" " (U')2 A(r) D(r) (5.7)

B(r) .1 + 2/3 (k2,) [(Ut)2 A(r)]"  d [Us A(r)] (5.8)

The ainus sign in Eq. (5.7) arises from the convention that y be positive

for monotonicay decreasing U(r). From the definition of j2, Ve see that

r - ro, P 0 CO correspond to y - cop 1, 0, respectively. In terms of Y,

Eq. (5.4) can be vritten as

I a .-/3 ey y(l - y2)4 f O'(y')" f(y') 0 (5.9)

Where

f(y) (5.10)

The Inverse trasnformation., r as a fumtion of y, Is obtaind, in

part., by & Ma lor expanslon of Zq. (5.5) about r - :

y2 - [UI(rO)] '1 (r - rO)-3 [1 a(r - r0) + ... o ] (5.11 )

where a is iven by sq. (.39). As a first --- dmt:io m, ve set r. ro

inside the brackets:

r" - r'O = [ - uor) Y ] 1 3( - 2

An ioqwoe result an n be obtaied by successive mjgaozStions., the

first of hVh leads to

,2= [-U'(ro)]' (r - r) ,3 ( 3 + A 2 Y'2/3) (5.13)
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where
-4/

Thus, if y- ?N3) Eq. (5.12) is a goodappoimtion to the inverse

transformtion.

The qntity ? in our perturbation parmeter. When -1., the

interal of q-. (5.9) can be evalumted approxim tely. Te ammatuds of is

easily estimted in the case of Invere power laws, for U'(ro) is of order

U(uo)/ - k2/ro, while U"(ro) ba lnitu k2/%2. us, has m niUl

(ko)n1/3. e neral, the condition is (kR)'/3--j , we R Is the range

over w hLch U cbmns apreelably. We have seen in Section IV that this

restriction insures the slow variation of the efftective potential W near the

tUrbing point. Umce, the size of b deteines the applicability of the

MM formiation.

elme *h is ml, Eq. (5.12) holds very well for y_ ? . This

value of Y corres4POds to the follo ing value of r:

(r1 - r 0 ) . 2 o 3 u,( o)1-1/3 (5.1)

0

An estlmte of the initude of the rigt-hand side of Eq. (5-.15) Yields

(kro) 4/9 --- 1. hus=, when ro- r-rl a function of r can be e3Wended

about ro and then convert*d, In first order, to a function of y by

q. (5.12). Alication of this proce o e to sq. (5.10) Yields

- 24.
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we now rewrite Eq. (5.9) as the sum of two integrals, the first of

which is

3 2/ f dyy~ - y2 f *jy,(Y,)"2 f(y') (-7
A oy

Since y'- j , we can use the relation of Eq. (5.16):

.- -/3 J a y(i - y;)4 4 ,'(') " [i- 2(y.)2'/-]2, (5.8)

N /3, + /3 + 0( A 2)  .(5.19)

Mi seco integral.*

0 y

am be carr'ied out by Ignoring the vuriatiag of (1 - y2)4 with y* six~
introuces n error in the fina result of O(A3). siqlifed inteel

can be integrated by part.:

-- 1/3 Y f (y')2 f(y) I: :
1/3 fP V yf(Y) . (5.21)

Me bogkrY ters is - 1/3 h at the uPp t, by 1q. (5.16), and it

is sero at the lover Unlt provided v(r) oes to sero at Infb ity faster

than r 1 . Mw reining integral is trivia when transformed back to the

r - varable., so

3 -/3\ -1/3f d (3/2) (k565/2Yl- (U')2 A2 (r) (.2

-- 1/3*h - 1/3 u- u(r1)] [ k3,13/2(r 1 ) J l(5.23)
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If the second term of Eq. (5.23) Is expnded about ro, we obtain, vith the

help of lq. (5.15),

. 2/3 -A + o(??/3) .(5.24)

The sus of fs. (5.19) and (5.24) yields

I -9/3 + o( *)  • (5.25)

The re.ning integral in Eq. (4..18) can be evaluated in a siml way,

the derivation being left to an appendix. The result is

li dr 2 4 (te) I +Ow(A12

PO (k 3W fo k)
Thus, Eq. (4.18) becomes

(21k) J f 0 (uc0 - exrpOiA) (5.26)

with A and gie by Zqs. (5.2), (5.25) and (A-3.2). If Eqs. (4.17) and

(5.26) are substituted Into Eq. (.) the followi approiation is

obtained in the limit of very uall :

i1o() 1 -i9M(-21x/31 (5.27)

[4k f dr4l/]

The cross section is the square of Eq. (5.27):

60(s) - S() .(5.28)

The quantity 6*T is the absolute square of Eq. (4.17); that is, it is the
cross section associated with a sca'e wave equation of the form Eq. (1..

with boumdary conditions given by Eq. (2.2).
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Th. integral..
00

can be written as

(k 2,)t (k 2,)# Po (k%) 4 k 2
0 0 0

We destepte three i gntegras as J V J2 , J3, respectively. The second

integral in Eq. (A.2) can be evaluated, to first order, byr expading r

about ro:

J=(ro).2 [- u,(ro)] 4  fo (r - ro) 4  (A.3)

0

S(ro)'2  [-u'(ro) 4 (po - ro)* (A.4)

BY mubein that r = p0 corresponds to y a 1, we am use Eq. (5.12) to

siqIify l1q. (A.4),

J2= 2(ro) 2 [U,(ro)]2/3 2g . (A.5)

To evaluate Ve split up the rage of integration into two parts,

Or-re and r"1 rloo , with r, defined by Zq. (5.15). An order of

magnitude estimate for the latter rang gives

J3()..L[(,)2)] Tl (A.6)

The remaining egmt of J3 my be transformed to the y-varible defined

by Eq. (5.5):

3(1). ,123 dy y-4/3 g() [( _- 2) - (,€.)
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where

S(y) _(U,)inf13 r'2 Al/3(r) B" 1 (r) .(A.8)

Uqoxtions (5.6) and (5.8) define A and B respectively. Since y LO, we

can expand the right-hand side of sqi. (A.8) about r - ro0, and then use

3q. (5.12). To first order, g(Y) is Just the constant g of Eq. (A. 5).

Further, in first upprwcInat~on, the lower limit in sq, (A.7) can umv

be set equal to zero, with the result

(i3 2/3 l to o Y /3r[l 2l4 -1]A9

On ordesr of mulitudes of g an be estimated from Sq. (A.5) In the

Sumner of section IT:

£ O[(kro) /31 O() . (A.10)

In Section IIp a minainuu was established for -Jp that Is,

1 L- kro) ( 3)(A.11)

We asM that the actual value of Jhas the saw order of mgnitude as its

minim. Then,. Eq. (A.6) an be neglecte relativ, to ra. (A.5) and (A.9),.

and Eq. (A.2) becoms
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